Central Composite Design Optimization of Zinc Removal from Contaminated Soil, Using Citric Acid as Biodegradable Chelant

نویسندگان

  • Farrokh Asadzadeh
  • Mahdi Maleki-Kaklar
  • Nooshin Soiltanalinejad
  • Farzin Shabani
چکیده

Citric acid (CA) was evaluated in terms of its efficiency as a biodegradable chelating agent, in removing zinc (Zn) from heavily contaminated soil, using a soil washing process. To determine preliminary ranges of variables in the washing process, single factor experiments were carried out with different CA concentrations, pH levels and washing times. Optimization of batch washing conditions followed using a response surface methodology (RSM) based central composite design (CCD) approach. CCD predicted values and experimental results showed strong agreement, with an R2 value of 0.966. Maximum removal of 92.8% occurred with a CA concentration of 167.6 mM, pH of 4.43, and washing time of 30 min as optimal variable values. A leaching column experiment followed, to examine the efficiency of the optimum conditions established by the CCD model. A comparison of two soil washing techniques indicated that the removal efficiency rate of the column experiment (85.8%) closely matching that of the batch experiment (92.8%). The methodology supporting the research experimentation for optimizing Zn removal may be useful in the design of protocols for practical engineering soil decontamination applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remediation of toxic metal contaminated soil by washing with biodegradable aminopolycarboxylate chelants.

Ex situ soil washing with synthetic extractants such as, aminopolycarboxylate chelants (APCs) is a viable treatment alternative for metal-contaminated site remediation. EDTA and its homologs are widely used among the APCs in the ex situ soil washing processes. These APCs are merely biodegradable and highly persistent in the aquatic environments leading to the post-use toxic effects. Therefore, ...

متن کامل

Central Composite experimental design applied to removal of phenanthrene and acenaphthene from soil samples

Abstract In this work, removal of phenanthrene and acenaphthene, as a representative of polycyclic aromatic hydrocarbons, was investigated from soil samples by the soil washing remediation method combined with Central Composite Design. Response surface methodology was utilized to investigate the individual and interactive effects of three variables of removal process including surfactant solut...

متن کامل

Hydrothermal synthesis of surface-modified copper oxide-doped zinc oxide nanoparticles for degradation of acid black 1: Modeling and optimization by response surface methodology

Dyes are widely used in various industries most of them are not readily biodegradable and are consisted of number of toxic, mutagenic, and carcinogenic compounds. Therefore, it is essential to remove them from effluent before their discharge to the environment. The objective of this investigation was to synthesize copper oxide (CuO) doped zinc oxide (ZnO) nanoparticles under mild hydrothermal c...

متن کامل

Comparison of central composite design and artificial neural network approaches for modeling and optimization of 2-methylpropane-2-thiol removal from contaminated soil by ultrasound

In this article a comparative study for modeling and optimization of 2-methylpropane-2-thiol removal from contaminated soil by ultrasound is investigated. Central Composite Design (CCD) and artificial neural network (ANN) were utilized and compared to each other in order to obtain appropriate predicting model with respect to sonication power (w), sonication time (min) and water/reactor volume r...

متن کامل

Arsenic Speciation and Extraction and the Significance of Biodegradable Acid on Arsenic Removal—An Approach for Remediation of Arsenic-Contaminated Soil

A series of arsenic remediation tests were conducted using a washing method with biodegradable organic acids, including oxalic, citric and ascorbic acids. Approximately 80% of the arsenic in one sample was removed under the effect of the ascorbic and oxalic acid combination, which was roughly twice higher than the effectiveness of the ascorbic and citric acid combination under the same conditio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2018